简介
Digital Soil Mapping is the creation and the population of a geographically referenced soil database. It is generated at a given resolution by using field and laboratory observation methods coupled with environmental data through quantitative relationships. Digital soil mapping is advancing on different fronts at different rates all across the world. This book presents the state-of-the art and explores strategies for bridging research, production, and environmental application of digital soil mapping.It includes examples from North America, South America, Europe, Asia, and Australia. The chapters address the following topics: - exploring new environmental covariates and sampling schemes - using integrated sensors to infer soil properties or status - innovative inference systems predicting soil classes, properties, and estimating their uncertainties - using digital soil mapping and techniques for soil assessment and environmental application - evaluating and using legacy soil data - protocol and capacity building for making digital soil mapping operational around the globe. Key themes: soil science --digital soil mapping - -soil survey and inventory - -soil information -geographic information systems Janis Boettinger is Professor of soil science at Utah State University, engaged in digital soil mapping research and outreach. Alfred E. Hartemink coordinates GlobalSoilMap.net from ISRIC - World Soil Information in The Netherlands. David Howell, Amanda Moore, and Suzann Kienast-Brown are digital soil mapping practitioners in the USA Soil Survey Program.
目录
Foreword 5
Preface 7
Contents 9
About the Editors 13
Contributors 14
Part I Introduction 22
to 1 Current State of Digital Soil Mapping and What Is Next 23
S. Grunwald 23
Part II Research 33
Section A Environmental Covariates and Soil Sampling 34
to 2 Environmental Covariates for Digital Soil Mapping in the Western USA 35
J.L. Boettinger 35
to 3 A Generalized Additive Soil Depth Model for a Mountainous Semi-Arid Watershed Based Upon Topographic and Land Cover Attributes 46
T.K. Tesfa, D.G. Tarboton, D.G. Chandler, and J.P. McNamara 46
to 4 Applying Geochronology in Predictive Digital Mapping of Soils 59
J.S. Noller 59
to 5 Scale Effects on Terrain Attribute Calculation and Their Use as Environmental Covariates for Digital Soil Mapping 70
S.M. Roecker and J.A. Thompson 70
to 6 Conditioned Latin Hypercube Sampling: Optimal Sample Size for Digital Soil Mapping of Arid Rangelands in Utah, USA 82
C.W. Brungard and J.L. Boettinger 82
Section B Soil Sensors and Remote Sensing 91
to 7 Using Proximal Soil Sensors for Digital Soil Mapping 92
R.A. Viscarra Rossel, N.J. McKenzie, and M.J. Grundy 92
to 8 The Use of Hyperspectral Imagery for Digital Soil Mapping in Mediterranean Areas 106
P. Lagacherie, C. Gomez, J.S. Bailly, F. Baret, and G. Coulouma 106
to 9 Automatic Interpretation of Quickbird Imagery for Digital Soil Mapping, North Caspian Region, Russia 116
M.V. Konyushkova 116
to 10 ASTER-Based Vegetation Map to Improve Soil Modeling in Remote Areas 125
E. Meirik, B. Frazier, D. Brown, P. Roberts, and R. Rupp 125
to 11 Digital Soil Boundary Detection Using Quantitative Hydrologic Remote Sensing 135
E.M. Engle, J.B.J. Harrison, J.M.H. Hendrickx, and B. Borchers 135
Section C Soil Inference Systems 147
to 12 Homosoil, a Methodology for Quantitative Extrapolation of Soil Information Across the Globe 148
B.P. Mallavan, B. Minasny, and A.B. McBratney 148
to 13 Artificial Neural Network and Decision Tree in Predictive Soil Mapping of Hoi Num Rin Sub-Watershed, Thailand 161
R. Moonjun, A. Farshad, D.P. Shrestha, and C. Vaiphasa 161
to 14 Evaluation of the Transferability of a Knowledge-Based Soil-Landscape Model 174
J. McKay, S. Grunwald, X. Shi, and R.F. Long 174
to 15 Random Forests Applied as a Soil Spatial Predictive Model in Arid Utah 187
A.K. Stum, J.L. Boettinger, M.A. White, and R.D. Ramsey 187
to 16 Two Methods for Using Legacy Data in Digital Soil Mapping 198
T. Mayr, M. Rivas-Casado, P. Bellamy, R. Palmer, J. Zawadzka,and R. Corstanje 198
Part III Environmental Application and Assessment 210
to 17 Mapping Heavy Metal Content in Soils with Multi-Kernel SVR and LiDAR Derived Data 211
C. Ballabio and R. Comolli 211
to 18 Mapping the CN Ratio of the Forest Litters in Europe-Lessons for Global Digital Soil Mapping 223
F. Carr茅, N. Jeann茅e, S. Casalegno, O. Lemarchand, H.I. Reuter,and L. Montanarella 223
to 19 Spatial Prediction and Uncertainty Assessment of Soil Organic Carbon in Hebei Province, China 232
Y.C. Zhao and X.Z. Shi 232
to 20 Estimating Soil Organic Matter Content by Regression Kriging 245
A. Marchetti, C. Piccini, R. Francaviglia, S. Santucci, and I. Chiuchiarelli 245
to 21 Digital Soil Mapping of Topsoil Organic Carbon Content of Rio de Janeiro State, Brazil 259
M.L. Mendon莽a-Santos, R.O. Dart, H.G. Santos, M.R. Coelho, R.L.L. Berbara, and J.F. Lumbreras 259
to 22 Comparing Decision Tree Modeling and Indicator Kriging for Mapping the Extent of Organic Soils in Denmark 270
M.H. Greve, M.B. Greve, R. Bou Kheir, P.K. B酶cher, R. Larsen,and K. McCloy 270
to 23 Modeling Wind Erosion Events -- Bridging the Gap Between Digital Soil Mapping and Digital Soil Risk Assessment 284
H.I. Reuter, L. Rodriguez Lado, T. Hengl, and L. Montanarella 284
Part IV Making Digital Soil Mapping Operational 297
to 24 Soilscapes Basis for Digital Soil Mapping in New Zealand 298
A.E. Hewitt, J.R.F. Barringer, G.J. Forrester, and S.J. McNeill 298
to 25 Legacy Soil Data Harmonization and Database Development 309
E. Dobos, T. Bialk贸, E. Micheli, and J. Kobza 309
to 26 Toward Digital Soil Mapping in Canada: Existing Soil Survey Data and Related Expert Knowledge 324
X. Geng, W. Fraser, B. VandenBygaart, S. Smith, A. Waddell, Y. Jiao, and G. Patterson 324
to 27 Predictive Ecosystem Mapping (PEM) for 8.2 Million ha of Forestland, British Columbia, Canada 335
R.A. MacMillan, D.E. Moon, R.A. Coup茅, and N. Phillips 335
to 28 Building Digital Soil Mapping Capacity in the Natural Resources Conservation Service: Mojave Desert Operational Initiative 355
A.C. Moore, D.W. Howell, C. Haydu-Houdeshell, C. Blinn, J. Hempel,and D. Smith 355
to 29 A Qualitative Comparison of Conventional Soil Survey and Digital Soil Mapping Approaches 366
S.M. Roecker, D.W. Howell, C.A. Haydu-Houdeshell, and C. Blinn 366
to 30 Applying the Optimum Index Factor to Multiple Data Types in Soil Survey 382
S. Kienast-Brown and J.L. Boettinger 382
to 31 U.S. Department of Agriculture (USDA) TEUI Geospatial Toolkit: An Operational Ecosystem Inventory Application 396
H. Fisk, R. Benton, C. Unger, T. King, and S. Williamson 396
to 32 Predictive Soil Maps Based on Geomorphic Mapping, Remote Sensing, and Soil Databases in the Desert Southwest 408
S.N. Bacon, E.V. McDonald, G.K. Dalldorf, S.E. Baker, D.E. Sabol Jr, T.B. Minor, S.D. Bassett, S.R. MacCabe, and T.F. Bullard 408
to 33 GlobalSoilMap.net -- A New Digital Soil Map of the World 419
A.E. Hartemink, J. Hempel, P. Lagacherie, A. McBratney, N. McKenzie, R.A. MacMillan, B. Minasny, L. Montanarella, M. Mendon莽a Santos, P. Sanchez, M. Walsh, and G.L. Zhang 419
to 34 Methodologies for Global Soil Mapping 424
B. Minasny and A.B. McBratney 424
Index 432
Preface 7
Contents 9
About the Editors 13
Contributors 14
Part I Introduction 22
to 1 Current State of Digital Soil Mapping and What Is Next 23
S. Grunwald 23
Part II Research 33
Section A Environmental Covariates and Soil Sampling 34
to 2 Environmental Covariates for Digital Soil Mapping in the Western USA 35
J.L. Boettinger 35
to 3 A Generalized Additive Soil Depth Model for a Mountainous Semi-Arid Watershed Based Upon Topographic and Land Cover Attributes 46
T.K. Tesfa, D.G. Tarboton, D.G. Chandler, and J.P. McNamara 46
to 4 Applying Geochronology in Predictive Digital Mapping of Soils 59
J.S. Noller 59
to 5 Scale Effects on Terrain Attribute Calculation and Their Use as Environmental Covariates for Digital Soil Mapping 70
S.M. Roecker and J.A. Thompson 70
to 6 Conditioned Latin Hypercube Sampling: Optimal Sample Size for Digital Soil Mapping of Arid Rangelands in Utah, USA 82
C.W. Brungard and J.L. Boettinger 82
Section B Soil Sensors and Remote Sensing 91
to 7 Using Proximal Soil Sensors for Digital Soil Mapping 92
R.A. Viscarra Rossel, N.J. McKenzie, and M.J. Grundy 92
to 8 The Use of Hyperspectral Imagery for Digital Soil Mapping in Mediterranean Areas 106
P. Lagacherie, C. Gomez, J.S. Bailly, F. Baret, and G. Coulouma 106
to 9 Automatic Interpretation of Quickbird Imagery for Digital Soil Mapping, North Caspian Region, Russia 116
M.V. Konyushkova 116
to 10 ASTER-Based Vegetation Map to Improve Soil Modeling in Remote Areas 125
E. Meirik, B. Frazier, D. Brown, P. Roberts, and R. Rupp 125
to 11 Digital Soil Boundary Detection Using Quantitative Hydrologic Remote Sensing 135
E.M. Engle, J.B.J. Harrison, J.M.H. Hendrickx, and B. Borchers 135
Section C Soil Inference Systems 147
to 12 Homosoil, a Methodology for Quantitative Extrapolation of Soil Information Across the Globe 148
B.P. Mallavan, B. Minasny, and A.B. McBratney 148
to 13 Artificial Neural Network and Decision Tree in Predictive Soil Mapping of Hoi Num Rin Sub-Watershed, Thailand 161
R. Moonjun, A. Farshad, D.P. Shrestha, and C. Vaiphasa 161
to 14 Evaluation of the Transferability of a Knowledge-Based Soil-Landscape Model 174
J. McKay, S. Grunwald, X. Shi, and R.F. Long 174
to 15 Random Forests Applied as a Soil Spatial Predictive Model in Arid Utah 187
A.K. Stum, J.L. Boettinger, M.A. White, and R.D. Ramsey 187
to 16 Two Methods for Using Legacy Data in Digital Soil Mapping 198
T. Mayr, M. Rivas-Casado, P. Bellamy, R. Palmer, J. Zawadzka,and R. Corstanje 198
Part III Environmental Application and Assessment 210
to 17 Mapping Heavy Metal Content in Soils with Multi-Kernel SVR and LiDAR Derived Data 211
C. Ballabio and R. Comolli 211
to 18 Mapping the CN Ratio of the Forest Litters in Europe-Lessons for Global Digital Soil Mapping 223
F. Carr茅, N. Jeann茅e, S. Casalegno, O. Lemarchand, H.I. Reuter,and L. Montanarella 223
to 19 Spatial Prediction and Uncertainty Assessment of Soil Organic Carbon in Hebei Province, China 232
Y.C. Zhao and X.Z. Shi 232
to 20 Estimating Soil Organic Matter Content by Regression Kriging 245
A. Marchetti, C. Piccini, R. Francaviglia, S. Santucci, and I. Chiuchiarelli 245
to 21 Digital Soil Mapping of Topsoil Organic Carbon Content of Rio de Janeiro State, Brazil 259
M.L. Mendon莽a-Santos, R.O. Dart, H.G. Santos, M.R. Coelho, R.L.L. Berbara, and J.F. Lumbreras 259
to 22 Comparing Decision Tree Modeling and Indicator Kriging for Mapping the Extent of Organic Soils in Denmark 270
M.H. Greve, M.B. Greve, R. Bou Kheir, P.K. B酶cher, R. Larsen,and K. McCloy 270
to 23 Modeling Wind Erosion Events -- Bridging the Gap Between Digital Soil Mapping and Digital Soil Risk Assessment 284
H.I. Reuter, L. Rodriguez Lado, T. Hengl, and L. Montanarella 284
Part IV Making Digital Soil Mapping Operational 297
to 24 Soilscapes Basis for Digital Soil Mapping in New Zealand 298
A.E. Hewitt, J.R.F. Barringer, G.J. Forrester, and S.J. McNeill 298
to 25 Legacy Soil Data Harmonization and Database Development 309
E. Dobos, T. Bialk贸, E. Micheli, and J. Kobza 309
to 26 Toward Digital Soil Mapping in Canada: Existing Soil Survey Data and Related Expert Knowledge 324
X. Geng, W. Fraser, B. VandenBygaart, S. Smith, A. Waddell, Y. Jiao, and G. Patterson 324
to 27 Predictive Ecosystem Mapping (PEM) for 8.2 Million ha of Forestland, British Columbia, Canada 335
R.A. MacMillan, D.E. Moon, R.A. Coup茅, and N. Phillips 335
to 28 Building Digital Soil Mapping Capacity in the Natural Resources Conservation Service: Mojave Desert Operational Initiative 355
A.C. Moore, D.W. Howell, C. Haydu-Houdeshell, C. Blinn, J. Hempel,and D. Smith 355
to 29 A Qualitative Comparison of Conventional Soil Survey and Digital Soil Mapping Approaches 366
S.M. Roecker, D.W. Howell, C.A. Haydu-Houdeshell, and C. Blinn 366
to 30 Applying the Optimum Index Factor to Multiple Data Types in Soil Survey 382
S. Kienast-Brown and J.L. Boettinger 382
to 31 U.S. Department of Agriculture (USDA) TEUI Geospatial Toolkit: An Operational Ecosystem Inventory Application 396
H. Fisk, R. Benton, C. Unger, T. King, and S. Williamson 396
to 32 Predictive Soil Maps Based on Geomorphic Mapping, Remote Sensing, and Soil Databases in the Desert Southwest 408
S.N. Bacon, E.V. McDonald, G.K. Dalldorf, S.E. Baker, D.E. Sabol Jr, T.B. Minor, S.D. Bassett, S.R. MacCabe, and T.F. Bullard 408
to 33 GlobalSoilMap.net -- A New Digital Soil Map of the World 419
A.E. Hartemink, J. Hempel, P. Lagacherie, A. McBratney, N. McKenzie, R.A. MacMillan, B. Minasny, L. Montanarella, M. Mendon莽a Santos, P. Sanchez, M. Walsh, and G.L. Zhang 419
to 34 Methodologies for Global Soil Mapping 424
B. Minasny and A.B. McBratney 424
Index 432
- 名称
- 类型
- 大小
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×
