数值计算方法

副标题:无

作   者:郑成德主编

分类号:

ISBN:9787302232827

微信扫一扫,移动浏览光盘

简介

   本书是根据理工科数学“数值计算方法课程教学基本要求”,为普通   高校理工科各专业本科生和工科各专业硕士研究生编写的教材。介绍了电   子计算机上常用的数值计算方法以及有关的基本概念与基本理论,内容包   括:非线性方程与线性方程组的数值解法、插值与逼近、数值积分与数值   微分、常微分方程数值解法、矩阵的特征值与特征向量计算。每章均配有   一定量的习题,部分例题附有MATLAB源程序,一些算法给出了框图,书末   附有部分习题参考答案。本书叙述简明,注意深入浅出,言简意赅;淡化   严格论证,削弱运算技巧;突出重点,循序渐进。    本书可作为普通高校理工科本科和工科硕士研究生各专业“数值计算   方法”或“数值分析”教材,也可供从事科学与工程计算的科技工作者和   研究人员参考。   

目录

  绪论
  第1章 基本概念与数学软件MATLAB简介
   1.1 误差的来源与误差分析的重要性
   1.2 误差的概念与误差的传播
   1.3 数值运算中应注意的几个原则
   1.4 数学软件MATLAB简介
   小结
   习题1
  第2章 解线性方程组的直接方法
   2.1 高斯消去法
   2.2 高斯列主元素消去法
   2.3 矩阵分解在解线性方程组中的应用
   2.4 向量与矩阵的范数
   2.5 误差分析
   小结
   习题2
  第3章 解线性方程组的迭代法
   3.1 简单迭代法
   3.2 雅可比迭代法
   3.3 高斯-塞德尔迭代法
   3.4 逐次超松弛迭代法
   小结
   习题3
  第4章 插值与拟合
   4.1 引言
   4.2 拉格朗日插值
   4.3 差商与牛顿插值
   4.4 差分与等距节点插值
   4.5 埃尔米特插值
   4.6 分段低次插值
   4.7 三次样条插值
   4.8 曲线拟合的最小二乘法
   小结
   习题4
  第5章 函数逼近与计算
   5.1 最佳一致逼近多项式
   5.2 函数的最佳平方逼近
   5.3 用正交多项式作最佳平方逼近
   5.4 有理逼近
   小结
   习题5
  第6章 数值积分与数值微分
   6.1 引言
   6.2 牛顿-柯特斯公式
   6.3 龙贝格算法
   6.4 高斯公式
   6.5 数值微分
   小结
   习题6
  第7章 非线性方程求解
   7.1 二分法
   7.2 迭代法
   7.3 牛顿法
   7.4 弦截法
   小结
   习题7
  第8章 常微分方程数值解法
   8.1 引言
   8.2 欧拉方法
   8.3 改进的欧拉方法
   8.4 龙格-库塔方法
   8.5 单步法的收敛性与稳定性
   8.6 线性多步法
   8.7 微分方程组与高阶微分方程的数值解法
   8.8 微分方程边值问题的数值解法
   小结
   习题8
  第9章 矩阵的特征值与特征向量计算
   9.1 幂法与反幂法
   9.2 对称矩阵的雅可比方法
   9.3 豪斯霍尔德方法
   9.4 QR算法
   小结
   习题9
  附录 部分习题参考答案
  参考文献
  

已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

数值计算方法
    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    loading icon