
微信扫一扫,移动浏览光盘
简介
本书是为综合大学、高等师范院校数学专业研究生基础课编写的教材,主要讲述拟共形映射与TeichmiXller空间的基础知识、基本理论及其近代重要进展。
全书共分十一章,内容包括:拟共形映射的定义与性质,拟共形映射的存在定理,偏差定理,拟圆周,拟共形映射与单叶函数,Riemann曲面上的拟共形映射,闭Riemann曲面上的极值问题,Riemann曲面的模问题与Teichmaller空间,有限型Riemann曲面上的Teichmiiller空间,Bers有界嵌入定理与Teichmaller空间的复结构,开Riemann曲面上的Teichmiiller理论。
本书在取材上,更关注Teichmiiller理论的基本理论与基本问题的讨论,而不试图涵盖当代全部进展,也不追求问题的“最一般性”。本书注意了材料的自足性与内容上的循序渐进,证明严谨,叙述详实,便于读者自学。 本书可作为高等院校数学专业复分析、几何拓扑、几何分析,以及数学物理等研究方向研究生的教材或研究参考书,也可供数学工作者阅读和参考。
目录
第一章 拟共形映射的定义与性质
1拓扑四边形的共形模
1.1拓扑四边形的概念
1.2拓扑四边形的共形等价类
1.3拓扑四边形的共形模
2双连通区域的共形模
2.1双连通区域的典型区域
2.2双连通区域的共形模
3极值长度
3.1极值长度的一般概念
3.2比较原理与合成原理
4极值长度与共形模的关系
4.1 用极值长度描述拓扑四边形的模
4.2 Rengel不等式
4.3极值长度中的极值度量
4.4模的单调性与次可加性
4.5模的连续性
4.6双连通域的模与极值长度
5模的极值问题
5.1模的极值问题的提法
5.2 Gr6tzsch极值问题
5.3 Teichmfiller极值问题
5.4 Mori(森)极值问题
5.5函数
6 C1类拟共形映射
…… 显示全部信息
1拓扑四边形的共形模
1.1拓扑四边形的概念
1.2拓扑四边形的共形等价类
1.3拓扑四边形的共形模
2双连通区域的共形模
2.1双连通区域的典型区域
2.2双连通区域的共形模
3极值长度
3.1极值长度的一般概念
3.2比较原理与合成原理
4极值长度与共形模的关系
4.1 用极值长度描述拓扑四边形的模
4.2 Rengel不等式
4.3极值长度中的极值度量
4.4模的单调性与次可加性
4.5模的连续性
4.6双连通域的模与极值长度
5模的极值问题
5.1模的极值问题的提法
5.2 Gr6tzsch极值问题
5.3 Teichmfiller极值问题
5.4 Mori(森)极值问题
5.5函数
6 C1类拟共形映射
…… 显示全部信息
拟共形映射与Teichmuller空间
- 名称
- 类型
- 大小
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×
