
Analysis of blast vibration signals-theories and methods
副标题:无
作 者:李夕兵,凌同华,张义平著
分类号:TB41
ISBN:9787030230317
微信扫一扫,移动浏览光盘
简介
随着爆破技术的广泛应用,人们越来越关注爆破震动对周围环境和构筑物的影响。爆破震动危害已成为工程和学术界越来越关注的重大问题。然而,由于爆破地震波的随机性、模糊性和不确定性,即便是爆破地震波在岩土介质中的传播规律这样似乎简单的问题也尚未得到完整的认识。如何对爆破震动信号进行分析,并在此基础上将爆破震动灾害控制在最小程度,已成为爆破领域众多国内外专家研究和探索的重大前沿课题。针对上述问题,本书作者结合近几年来在爆破震动效应及其灾害控制方面所做的一些研究工作和国内外在这方面的大量文献,基于大量爆破现场监测资料和最新数学分析手段,从爆破震动信号的产生与传播、爆破震动监测、爆破震动预测、爆破震动信号分析技术、爆破震动信号不同频带的能量分布特征、爆破震动作用下结构体的动态响应特征、爆破震动危害机制与主动控制、爆破震动安全判据等方面对爆破震动效应进行了较为全面而深入的研究和总结。全书共分13章,内容包括绪论、爆破地震波的产生与传播、爆破震动信号的傅立叶变换、爆破震动信号的小波变换、爆破震动信号的HHT变换、爆破震动信号小波变换与HHT变换的比较、爆破震动监测、爆破震动预测、爆破震动信号不同频带的能量分布特征、硐室大爆破震动特征分析、结构体对爆破震动的动态响应特征、爆破震动危害机制与安全评估、爆破震动灾害主动控制等内容。
目录
目录
《岩石力学与工程研究著作丛书》序
《岩石力学与工程研究著作丛书》编者的话
前言
第1章 绪论
1.1 引言
1.2 国内外研究现状及进展
1.2.1 爆破地震波的危害机制
1.2.2 爆破震动监测
1.2.3 爆破震动信号分析技术
1.2.4 爆破地震波的传播规律
1.2.5 爆破震动峰值强度预测
1.2.6 爆破震动安全判据
1.2.7 爆破震动危害控制
第2章 爆破地震波的产生与传播
2.1 爆破地震波的产生与爆破地震效应
2.1.1 爆破地震波的产生
2.1.2 爆破地震效应
2.2 爆破地震效应的研究方法
2.3 爆破地震波与天然地震波的差异
2.4 爆破地震波的类型及传播方式
2.4.1 爆破地震波的类型
2.4.2 爆破地震波的传播方式
2.5 爆破地震波对建(构)筑物的危害效应
2.5.1 建(构)筑物受爆破震动破坏的形式和影响因素
2.5.2 能量破坏机理
2.5.3 爆破震动特性对建(构)筑物破坏的影响
2.6 场地对爆破地震波传播的影响
2.6.1 场地土层的动力特性
2.6.2 场地覆盖土层对爆破地震波的影响
第3章 爆破震动信号的傅里叶变换
3.1 信号的描述、分类与处理
3.1.1 信号的描述与分类
3.1.2 信号的分析与处理
3.2 傅里叶变换
3.2.1 离散傅里叶级数
3.2.2 傅里叶谱
3.2.3 傅里叶变换的原理
3.2.4 傅里叶变换的几个重要的性质
3.2.5 信号数字滤波
3.2.6 信号的短时傅里叶变换
3.3 傅里叶变换在爆破震动信号中的应用
3.3.1 获取爆破震动信号的功率谱
3.3.2 获取爆破震动信号的优势频率
第4章 爆破震动信号的小波变换
4.1 小波分析理论
4.2 小波分析中小波函数(基函数)的选取
4.3 小波包分析
4.3.1 小波包分析理论
4.9.2 小波及小波包分析算法的实现
4.4 爆破震动信号的小波及小波包分析技术
4.4.1 爆破震动信号小波分析技术
4.4.2 爆破震动信号小波包分析技术
4.4.3 本分析方法的有效性检验
第5章 爆破震动信号的HHT法
5.1 HHT方法
5.1.1 EMD原理与算法
5.1.2 Hilbert变换与Hilbert谱
5.1.3 HHT法的优越性
5.2 HHT法的仿真实例
5.3 基于HHT的爆破震动信号分析
5.4 HHT法研究的有关问题
5.4.1 分解方法
5.4.2 信号的物理解释
5.4.3 端点效应
5.4.4 信号长度的选取
5.5 HHT法的完备性与正交性
5.5.1 完备性的验证
5.5.2 正交性
第6章 爆破震动信号小波变换与HHT法的比较
6.1 信号的分解过程及信息重构
6.2 信号的频谱分析
6.3 信号突变检测
6.4 信号的分辨率对比
6.5 消噪与滤波
第7章 爆破震动监测
7.1 爆破震动测试内容与原理
7.1.1 爆破震动测试内容
7.1.2 测试的基本原理
7.1.3 测试系统的构成
7.1.4 震动测试的几个重要概念
7.2 爆破震动记录仪
7.2.1 爆破震动记录仪的基本要求
7.2.2 国内外爆破震动记录仪介绍
7.3 爆破震动传感器
7.3.1 非电量电测法和传感器
7.3.2 传感器的组成
7.3.3 传感器的特性
7.3.4 传感器的一般要求
7.3.5 传感器频率要求
7.3.6 传感器的安装和定位
7.3.7 爆破中常用传感器的种类
7.4 爆破震动监测实施的原则与方法
7.4.1 测点布置的原则
7.4.2 测震系统的标定
7.4.3 爆破震动测试的抗干扰措施
7.4.4 震动记录仪的设置
第8章 爆破震动预测
8.1 爆破震动波形的预测
8.1.1 线性叠加预测模型
8.1.2 多频带小波系数预测模型
8.2 爆破震动强度的预测
8.2.1 爆破震动峰值速度预测模型
8.2.2 现有预测模型存在的问题
8.3 峰值质点震速预测的人工神经网络模型
8.3.1 人工神经网络原理
8.3.2 人工神经网络的特点
8.3.3 人工神经网络设计
8.3.4 峰值质点震速预测的模糊神经网络模型
8.4 爆破震动峰值质点震速预测
第9章 爆破震动信号在不同频带的能量分布特征
9.1 爆破震动监测试验
9.1.1 爆破震动测试系统
9.1.2 爆破震动现场测试
9.2 信号频带能量分布规律的小波包分析
9.2.1 小波包分解深度与小波包基的确定
9.2.2 爆破震动信号的频带能量分布特征分析
9.3 爆破条件对信号频带能量分布的影响
9.3.1 最大段药量的影响
9.3.2 总药量对爆破震动信号频带能量分布的影响
9.3.3 爆心距对爆破震动信号频带能量分布的影响
9.4 爆破信号能量分布特征的几点认识
第10章 硐室大爆破震动特征分析
10.1 爆破震动信号分析
10.1.1 工程背景
10.1.2 大爆破震动监测
10.2 基于HHT方法的震动特征分析方法
10.3 质点震动速度峰值与瞬时能量变化特征
10.4 爆破震动频率变化特征
第11章 结构体对爆破震动的动态响应特征
11.1 反应谱理论
11.2 反应谱的数值计算
11.3 反应谱计算的实现
11.4 单段爆破震动反应谱的特征分析
11.5 多段微差爆破震动反应谱的特征分析
第12章 爆破震动危害机制与安全评判
12.1 爆破震动强度特性及其危害机制
12.1.1 震动幅值强度特性及其在震动危害中的作用
12.1.2 震动频谱特性及其在震动危害中的作用
12.1.3 震动持时特性及其在震动危害中的作用
12.1.4 爆破震动危害机制
12.2 爆破震动安全判据
12.2.1 单一质点震速安全判据
12.2.2 速度-频率相关安全判据
12.2.3 爆破破坏指数安全判据
12.2.4 多因素综合安全判据
12.3 基于时-能密度法的爆破震动安全判据
12.3.1 时-能密度曲线与爆破震动三要素的关系
12.3.2 爆破震动损伤统一安全判据的依据
12.3.3 爆破震动TEDI值预测
12.4 爆破震动损伤统一安全判据计算与评判
第13章 爆破震动灾害主动楦制
13.1 爆破震动灾害控制常用的手段与方法
13.1.1 干扰降震法
13.1.2 改变爆炸参数
13.2 基于实测爆破震动资料分析的干扰降震法
13.2.1 普通微差干扰降震法的原理
13.2.2 普通干扰降震法的局限性
13.2.3 基于实测爆破震动信号分析的干扰降震法
13.3 最优微差延期时间的确定
13.3.1 微差延期时间的识别
13.3.2 微差爆破震动信号的分离
13.4 爆破震动灾害主动控制
13.4.1 微差延期时间对爆破震动强度的影响
13.4.2 基于微差干扰降震的爆破震动灾害主动控制
参考文献
附录A 爆破震动安全判据计算结果
附录B 爆破震动分析有关源程序
Preface of Rock Mechanics and Engineering Works Series
From the Editor
Foreword
Chapter 1 Introduction
1.1 Foreword
1.2 The domestic and international research state and progress
1.2.1 Damage mechanism of blast vibration waves
1.2.2 Blast vibration monitoring
1.2.3 Analysis technology of blast vibration signal
1.2.4 Propagation laws of blast vibration waves
1.2.5 Prediction of blast vibration peak intensity
1.2.6 The safe criterion for damage induced by blast vibration
1.2.7 Blast vibration damage control
Chapter 2 Production and propagation of blast vibration waves
2.1 Blast vibration waves production and blast vibration effect
2.1.1 Blast vibration waves production
2.1.2 Blast vibration effect
2.2 Study method of blast vibration effect
2.3 The differences between blast vibration waves and natural seismic wave
2.4 The type of blast vibration waves and propagating way
2.4.1 The type of blast vibration waves
2.4.2 Propagating way of blast vibration waves
2.5 The damage effect of blast vibration waves to the building(structure)
2.5.1 Damage in the form of blasting vibration and influencing factors
2.5.2 The energy damage mechanism
2.5.3 Influence of blast vibration characteristics on the building (structure)
2.6 Influence of the location condition on blast vibration waves propagation
2.6.1 Dynamic characteristics of location soil layer
2.6.2 Influence of location soil layer on blast vibration waves
Chapter 3 Fourier transform of blast vibration signals
3.1 Signal description, classification and processing
3.1.1 Signal description and classification
3.1.2 Signal analysis and processing
3.2 Fourier transform
3.2.1 Discrete Fourier series
3.2.2 Fourier spectrum
3.2.3 Principle of Fourier transform
3.2.4 Several important characteristics of Fourier transform
3.2.5 Signal numeral filter
3.2.6 Short-time Fourier transform
3.3 Application of Fourier transform in blast vibration signals analysis
3.3.1 Get power spectrum of blast vibration signal
3.3.2 Get dominant frequency of blast vibration signal
Chapter 4 Wavelet transform of blast vibration signal
4.1 Wavelet analysis theory
4.2 Wavelet function (basic function) selection in wavelet analysis
4.3 Wavelet packet analysis
4.3.1 Wavelet packet analysis theory
4.3.2 Algorithm realization of wavelet and wavelet packet
4.4 Wavelet and wavelet packet analysis technology of blast vibration signal
4.4.1 Wavelet analysis technology of blast vibration signal
4.4.2 Wavelet packet analysis technology of blast vibration signal
4.4.3 Validity check of the analysis method
Chapter 5 HHT method of blast vibration
5.1 HHT method
5.1.1 Principle and algorithm of empirical mode decomposition
5.1.2 HHT transform and HHT spectrum
5.1.3 Characteristics of HHT method
5.2 Simulation example of HHT method
5.3 Blast vibration signal analysis based on HHT
5.4 Related questions of HHT method
5.4.1 Decomposition method
5.4.2 Signal physical explanation
5.4.3 End problem
5.4.4 Selection of signal length
5.5 Integrity and orthogonality of HHT method
5.5.1 Integrity check
5.5.2 Orthogonality
Chapter 6 Comparison of wavelet transformation with HHT of blast vibration signal
6.1 Process and reconstruction of signal decomposition
6.2 Signal spectral analysis
6.3 Signal sudden change examination
6.4 Comparison of signal resolution
6.5 Denoising and filtering
Chapter 7 Blast vibration monitoring
7.1 Contents and principle of blast vibration monitoring
7.1.1 Monitoring content
7.1.2 Monitoring basic principle
7.1.3 Monitoring system composition
7.1.4 Several important concepts about vibration monitoring
7.2 Blast vibration recording instrument
7.2.1 Basic demand for blast vibration recording instrument
7.2.2 An introduction to vibration recording instrument
7.3 Blast vibration sensor
7.3.1 Noelectrify electromeasure method and sensor
7.3.2 Sensor composition
7.3.3 Sensor characteristicy
7.3.4 General demand for sensor
7.3.5 Frequency demand for sensor
7.3.6 Sensor installment and localization
7.3.7 Commonly used sensor types in blast vibration
7.4 Monitoring principle and method of blast vibration
7.4.1 Arrangemett principle of measuring point
7.4.2 Calibration of monitoring system
7.4.3 Anti-interference measure in blast vibration monitor
7.4.4 Recording instrument setting
Chapter 8 Blast vibration forecast
8.1 Forecast of the wave shape of blast vibration
8.1.1 Linear superposition model
8.1.2 Multi-frequency band wavelet coefficient model
8.2 Forecast of blast vibration intensity
8.2.1 Forecast model of blast vibration peak velocity
8.2.2 Existing questions of present forecast model
8.3 Artificial neural networks model of peak particle velocity forecast
8.3.1 Principle of artificial neural networks
8.3.2 Characteristics of artificial neural networks
8.3.3 Design of artificial neural networks
8.3.4 Fuzzy neural network model of peak particle velocity forecast
8.4 Forecast model of blast vibration peak particle velocity
Chapter 9 Energy distribution characteristics of blast vibration signal in different frequency bands
9.1 Blast vibration monitoring experiment
9.1.1 Blast vibration monitoring system
9.1.2 Blast vibration monitoring
9.2 Analysis of signal frequency band energy distribution rule based on wavelet packet
9.2.1 Decomposition depth and basic function determination of wavelet packet
9.2.2 Frequency band energy distribution characteristics of blast vibration signa
9.3 Influence of blast condition on signal frequency band energy distribution
9.3.1 Influetce of maximum instantaneous charge on frequency bands energy distribution of blast vibration signals
9.3.2 Influence of total charge on frequency bands energy distribution of blast vibration signals
9.3.3 Influence of distance from blast center on frequency bands energy distribution of blast vibration signals
9.4 Several understanding of blast signal energy distribution characteristic
Chapter 10 Vibration characteristic analysis of chamber blast
10.1 Blast vibration signal analysis
10.1.1 Project backgrounds
10.1.2 Big blast vibration monitoring
10.2 Vibration characteristic analysis based on HHT method
10.3 Characteristics of blast vibration peak velocity and momentary energy
10.4 Characteristics of blast vibration signal frequency
Chapter 11 Dynamic response characteristic to structure in blast vibration
11.1 Response spectrum theory
11.2 Numerical calculation of response spectrum
11.3 Realization of numerical calculation of response spectrum
11.4 Response spectrum characteristic analysis of single-interval-time blast vibration
11.5 Response spectrum characteristic analysis of multi-interval-time blast vibration
Chapter 12 Blast vibration damage mechanism and safe evaluation
12.1 Blast vibration intensity characteristic and damage mechanism
12.1.1 Characteristics of vibration amplitude value intensity and its harm function in vibration
12.1.2 Characteristics of vibration frequency spectrum and its harm function in vibration
12.1.3 Characteristics of vibration duration characteristic and its harm function in vibration
12.1.4 Blast vibration damage mechanism
12.2 The safe criterion of damage induced by blast vibration
12.2.1 The single particle vibration velocity criterion
12.2.2 Velocity-frequency relevant safety criterion
12.2.3 Blast damage index (BDI)safety criterion
12.2.4 Multifactor comprehensive criterion of damage induced by blast vibration
12.3 Blast vibration safety criterion basedon time-energy density analysis
12.3.1 The relevancy to the integral of the time-energy density (TEDI) and three factors of blast vibration
12.3.2 The basis of unified criterion for damage induced by blast vibration
12.3.3 The TEDI value forecast
12.4 Calculation and judgment of unified criterion for damage induced by blast vibration
Chapter 13 Blast vibration damage initiative control
13.1 Commonly used means and method of blast vibration damage control
13.1.1 Blast vibration reduction by waveform interference
13.1.2 Change blast parameter
13.2 Blast vibration reduction by waveform interference based on actual blast vibration monitor analysis
13.2.1 The principle of ordinary blast vibration reduction by waveform interference
13.2.2 The limitation of ordinary blast vibration reduction by waveform interference
13.2.3 Means of waveform interference based on measured millisecond blast vibration signals analysis
13.3 Determination of the reasonable interval of delay time
13.3.1 Recognition of the interval of delay time
13.3.2 Millisecond blast vibration signal separation
13.4 Blast vibration damage initiative control
13.4.1 Influence of the interval of delay time on blasting vibration intensity
13.4.2 Blast vibration damage initiative control based on waveform interference
References
Appendices A Calculation results of unified criterion for damage induced by blast vibration
Appendices B Program about blast vibration analysis
《岩石力学与工程研究著作丛书》序
《岩石力学与工程研究著作丛书》编者的话
前言
第1章 绪论
1.1 引言
1.2 国内外研究现状及进展
1.2.1 爆破地震波的危害机制
1.2.2 爆破震动监测
1.2.3 爆破震动信号分析技术
1.2.4 爆破地震波的传播规律
1.2.5 爆破震动峰值强度预测
1.2.6 爆破震动安全判据
1.2.7 爆破震动危害控制
第2章 爆破地震波的产生与传播
2.1 爆破地震波的产生与爆破地震效应
2.1.1 爆破地震波的产生
2.1.2 爆破地震效应
2.2 爆破地震效应的研究方法
2.3 爆破地震波与天然地震波的差异
2.4 爆破地震波的类型及传播方式
2.4.1 爆破地震波的类型
2.4.2 爆破地震波的传播方式
2.5 爆破地震波对建(构)筑物的危害效应
2.5.1 建(构)筑物受爆破震动破坏的形式和影响因素
2.5.2 能量破坏机理
2.5.3 爆破震动特性对建(构)筑物破坏的影响
2.6 场地对爆破地震波传播的影响
2.6.1 场地土层的动力特性
2.6.2 场地覆盖土层对爆破地震波的影响
第3章 爆破震动信号的傅里叶变换
3.1 信号的描述、分类与处理
3.1.1 信号的描述与分类
3.1.2 信号的分析与处理
3.2 傅里叶变换
3.2.1 离散傅里叶级数
3.2.2 傅里叶谱
3.2.3 傅里叶变换的原理
3.2.4 傅里叶变换的几个重要的性质
3.2.5 信号数字滤波
3.2.6 信号的短时傅里叶变换
3.3 傅里叶变换在爆破震动信号中的应用
3.3.1 获取爆破震动信号的功率谱
3.3.2 获取爆破震动信号的优势频率
第4章 爆破震动信号的小波变换
4.1 小波分析理论
4.2 小波分析中小波函数(基函数)的选取
4.3 小波包分析
4.3.1 小波包分析理论
4.9.2 小波及小波包分析算法的实现
4.4 爆破震动信号的小波及小波包分析技术
4.4.1 爆破震动信号小波分析技术
4.4.2 爆破震动信号小波包分析技术
4.4.3 本分析方法的有效性检验
第5章 爆破震动信号的HHT法
5.1 HHT方法
5.1.1 EMD原理与算法
5.1.2 Hilbert变换与Hilbert谱
5.1.3 HHT法的优越性
5.2 HHT法的仿真实例
5.3 基于HHT的爆破震动信号分析
5.4 HHT法研究的有关问题
5.4.1 分解方法
5.4.2 信号的物理解释
5.4.3 端点效应
5.4.4 信号长度的选取
5.5 HHT法的完备性与正交性
5.5.1 完备性的验证
5.5.2 正交性
第6章 爆破震动信号小波变换与HHT法的比较
6.1 信号的分解过程及信息重构
6.2 信号的频谱分析
6.3 信号突变检测
6.4 信号的分辨率对比
6.5 消噪与滤波
第7章 爆破震动监测
7.1 爆破震动测试内容与原理
7.1.1 爆破震动测试内容
7.1.2 测试的基本原理
7.1.3 测试系统的构成
7.1.4 震动测试的几个重要概念
7.2 爆破震动记录仪
7.2.1 爆破震动记录仪的基本要求
7.2.2 国内外爆破震动记录仪介绍
7.3 爆破震动传感器
7.3.1 非电量电测法和传感器
7.3.2 传感器的组成
7.3.3 传感器的特性
7.3.4 传感器的一般要求
7.3.5 传感器频率要求
7.3.6 传感器的安装和定位
7.3.7 爆破中常用传感器的种类
7.4 爆破震动监测实施的原则与方法
7.4.1 测点布置的原则
7.4.2 测震系统的标定
7.4.3 爆破震动测试的抗干扰措施
7.4.4 震动记录仪的设置
第8章 爆破震动预测
8.1 爆破震动波形的预测
8.1.1 线性叠加预测模型
8.1.2 多频带小波系数预测模型
8.2 爆破震动强度的预测
8.2.1 爆破震动峰值速度预测模型
8.2.2 现有预测模型存在的问题
8.3 峰值质点震速预测的人工神经网络模型
8.3.1 人工神经网络原理
8.3.2 人工神经网络的特点
8.3.3 人工神经网络设计
8.3.4 峰值质点震速预测的模糊神经网络模型
8.4 爆破震动峰值质点震速预测
第9章 爆破震动信号在不同频带的能量分布特征
9.1 爆破震动监测试验
9.1.1 爆破震动测试系统
9.1.2 爆破震动现场测试
9.2 信号频带能量分布规律的小波包分析
9.2.1 小波包分解深度与小波包基的确定
9.2.2 爆破震动信号的频带能量分布特征分析
9.3 爆破条件对信号频带能量分布的影响
9.3.1 最大段药量的影响
9.3.2 总药量对爆破震动信号频带能量分布的影响
9.3.3 爆心距对爆破震动信号频带能量分布的影响
9.4 爆破信号能量分布特征的几点认识
第10章 硐室大爆破震动特征分析
10.1 爆破震动信号分析
10.1.1 工程背景
10.1.2 大爆破震动监测
10.2 基于HHT方法的震动特征分析方法
10.3 质点震动速度峰值与瞬时能量变化特征
10.4 爆破震动频率变化特征
第11章 结构体对爆破震动的动态响应特征
11.1 反应谱理论
11.2 反应谱的数值计算
11.3 反应谱计算的实现
11.4 单段爆破震动反应谱的特征分析
11.5 多段微差爆破震动反应谱的特征分析
第12章 爆破震动危害机制与安全评判
12.1 爆破震动强度特性及其危害机制
12.1.1 震动幅值强度特性及其在震动危害中的作用
12.1.2 震动频谱特性及其在震动危害中的作用
12.1.3 震动持时特性及其在震动危害中的作用
12.1.4 爆破震动危害机制
12.2 爆破震动安全判据
12.2.1 单一质点震速安全判据
12.2.2 速度-频率相关安全判据
12.2.3 爆破破坏指数安全判据
12.2.4 多因素综合安全判据
12.3 基于时-能密度法的爆破震动安全判据
12.3.1 时-能密度曲线与爆破震动三要素的关系
12.3.2 爆破震动损伤统一安全判据的依据
12.3.3 爆破震动TEDI值预测
12.4 爆破震动损伤统一安全判据计算与评判
第13章 爆破震动灾害主动楦制
13.1 爆破震动灾害控制常用的手段与方法
13.1.1 干扰降震法
13.1.2 改变爆炸参数
13.2 基于实测爆破震动资料分析的干扰降震法
13.2.1 普通微差干扰降震法的原理
13.2.2 普通干扰降震法的局限性
13.2.3 基于实测爆破震动信号分析的干扰降震法
13.3 最优微差延期时间的确定
13.3.1 微差延期时间的识别
13.3.2 微差爆破震动信号的分离
13.4 爆破震动灾害主动控制
13.4.1 微差延期时间对爆破震动强度的影响
13.4.2 基于微差干扰降震的爆破震动灾害主动控制
参考文献
附录A 爆破震动安全判据计算结果
附录B 爆破震动分析有关源程序
Preface of Rock Mechanics and Engineering Works Series
From the Editor
Foreword
Chapter 1 Introduction
1.1 Foreword
1.2 The domestic and international research state and progress
1.2.1 Damage mechanism of blast vibration waves
1.2.2 Blast vibration monitoring
1.2.3 Analysis technology of blast vibration signal
1.2.4 Propagation laws of blast vibration waves
1.2.5 Prediction of blast vibration peak intensity
1.2.6 The safe criterion for damage induced by blast vibration
1.2.7 Blast vibration damage control
Chapter 2 Production and propagation of blast vibration waves
2.1 Blast vibration waves production and blast vibration effect
2.1.1 Blast vibration waves production
2.1.2 Blast vibration effect
2.2 Study method of blast vibration effect
2.3 The differences between blast vibration waves and natural seismic wave
2.4 The type of blast vibration waves and propagating way
2.4.1 The type of blast vibration waves
2.4.2 Propagating way of blast vibration waves
2.5 The damage effect of blast vibration waves to the building(structure)
2.5.1 Damage in the form of blasting vibration and influencing factors
2.5.2 The energy damage mechanism
2.5.3 Influence of blast vibration characteristics on the building (structure)
2.6 Influence of the location condition on blast vibration waves propagation
2.6.1 Dynamic characteristics of location soil layer
2.6.2 Influence of location soil layer on blast vibration waves
Chapter 3 Fourier transform of blast vibration signals
3.1 Signal description, classification and processing
3.1.1 Signal description and classification
3.1.2 Signal analysis and processing
3.2 Fourier transform
3.2.1 Discrete Fourier series
3.2.2 Fourier spectrum
3.2.3 Principle of Fourier transform
3.2.4 Several important characteristics of Fourier transform
3.2.5 Signal numeral filter
3.2.6 Short-time Fourier transform
3.3 Application of Fourier transform in blast vibration signals analysis
3.3.1 Get power spectrum of blast vibration signal
3.3.2 Get dominant frequency of blast vibration signal
Chapter 4 Wavelet transform of blast vibration signal
4.1 Wavelet analysis theory
4.2 Wavelet function (basic function) selection in wavelet analysis
4.3 Wavelet packet analysis
4.3.1 Wavelet packet analysis theory
4.3.2 Algorithm realization of wavelet and wavelet packet
4.4 Wavelet and wavelet packet analysis technology of blast vibration signal
4.4.1 Wavelet analysis technology of blast vibration signal
4.4.2 Wavelet packet analysis technology of blast vibration signal
4.4.3 Validity check of the analysis method
Chapter 5 HHT method of blast vibration
5.1 HHT method
5.1.1 Principle and algorithm of empirical mode decomposition
5.1.2 HHT transform and HHT spectrum
5.1.3 Characteristics of HHT method
5.2 Simulation example of HHT method
5.3 Blast vibration signal analysis based on HHT
5.4 Related questions of HHT method
5.4.1 Decomposition method
5.4.2 Signal physical explanation
5.4.3 End problem
5.4.4 Selection of signal length
5.5 Integrity and orthogonality of HHT method
5.5.1 Integrity check
5.5.2 Orthogonality
Chapter 6 Comparison of wavelet transformation with HHT of blast vibration signal
6.1 Process and reconstruction of signal decomposition
6.2 Signal spectral analysis
6.3 Signal sudden change examination
6.4 Comparison of signal resolution
6.5 Denoising and filtering
Chapter 7 Blast vibration monitoring
7.1 Contents and principle of blast vibration monitoring
7.1.1 Monitoring content
7.1.2 Monitoring basic principle
7.1.3 Monitoring system composition
7.1.4 Several important concepts about vibration monitoring
7.2 Blast vibration recording instrument
7.2.1 Basic demand for blast vibration recording instrument
7.2.2 An introduction to vibration recording instrument
7.3 Blast vibration sensor
7.3.1 Noelectrify electromeasure method and sensor
7.3.2 Sensor composition
7.3.3 Sensor characteristicy
7.3.4 General demand for sensor
7.3.5 Frequency demand for sensor
7.3.6 Sensor installment and localization
7.3.7 Commonly used sensor types in blast vibration
7.4 Monitoring principle and method of blast vibration
7.4.1 Arrangemett principle of measuring point
7.4.2 Calibration of monitoring system
7.4.3 Anti-interference measure in blast vibration monitor
7.4.4 Recording instrument setting
Chapter 8 Blast vibration forecast
8.1 Forecast of the wave shape of blast vibration
8.1.1 Linear superposition model
8.1.2 Multi-frequency band wavelet coefficient model
8.2 Forecast of blast vibration intensity
8.2.1 Forecast model of blast vibration peak velocity
8.2.2 Existing questions of present forecast model
8.3 Artificial neural networks model of peak particle velocity forecast
8.3.1 Principle of artificial neural networks
8.3.2 Characteristics of artificial neural networks
8.3.3 Design of artificial neural networks
8.3.4 Fuzzy neural network model of peak particle velocity forecast
8.4 Forecast model of blast vibration peak particle velocity
Chapter 9 Energy distribution characteristics of blast vibration signal in different frequency bands
9.1 Blast vibration monitoring experiment
9.1.1 Blast vibration monitoring system
9.1.2 Blast vibration monitoring
9.2 Analysis of signal frequency band energy distribution rule based on wavelet packet
9.2.1 Decomposition depth and basic function determination of wavelet packet
9.2.2 Frequency band energy distribution characteristics of blast vibration signa
9.3 Influence of blast condition on signal frequency band energy distribution
9.3.1 Influetce of maximum instantaneous charge on frequency bands energy distribution of blast vibration signals
9.3.2 Influence of total charge on frequency bands energy distribution of blast vibration signals
9.3.3 Influence of distance from blast center on frequency bands energy distribution of blast vibration signals
9.4 Several understanding of blast signal energy distribution characteristic
Chapter 10 Vibration characteristic analysis of chamber blast
10.1 Blast vibration signal analysis
10.1.1 Project backgrounds
10.1.2 Big blast vibration monitoring
10.2 Vibration characteristic analysis based on HHT method
10.3 Characteristics of blast vibration peak velocity and momentary energy
10.4 Characteristics of blast vibration signal frequency
Chapter 11 Dynamic response characteristic to structure in blast vibration
11.1 Response spectrum theory
11.2 Numerical calculation of response spectrum
11.3 Realization of numerical calculation of response spectrum
11.4 Response spectrum characteristic analysis of single-interval-time blast vibration
11.5 Response spectrum characteristic analysis of multi-interval-time blast vibration
Chapter 12 Blast vibration damage mechanism and safe evaluation
12.1 Blast vibration intensity characteristic and damage mechanism
12.1.1 Characteristics of vibration amplitude value intensity and its harm function in vibration
12.1.2 Characteristics of vibration frequency spectrum and its harm function in vibration
12.1.3 Characteristics of vibration duration characteristic and its harm function in vibration
12.1.4 Blast vibration damage mechanism
12.2 The safe criterion of damage induced by blast vibration
12.2.1 The single particle vibration velocity criterion
12.2.2 Velocity-frequency relevant safety criterion
12.2.3 Blast damage index (BDI)safety criterion
12.2.4 Multifactor comprehensive criterion of damage induced by blast vibration
12.3 Blast vibration safety criterion basedon time-energy density analysis
12.3.1 The relevancy to the integral of the time-energy density (TEDI) and three factors of blast vibration
12.3.2 The basis of unified criterion for damage induced by blast vibration
12.3.3 The TEDI value forecast
12.4 Calculation and judgment of unified criterion for damage induced by blast vibration
Chapter 13 Blast vibration damage initiative control
13.1 Commonly used means and method of blast vibration damage control
13.1.1 Blast vibration reduction by waveform interference
13.1.2 Change blast parameter
13.2 Blast vibration reduction by waveform interference based on actual blast vibration monitor analysis
13.2.1 The principle of ordinary blast vibration reduction by waveform interference
13.2.2 The limitation of ordinary blast vibration reduction by waveform interference
13.2.3 Means of waveform interference based on measured millisecond blast vibration signals analysis
13.3 Determination of the reasonable interval of delay time
13.3.1 Recognition of the interval of delay time
13.3.2 Millisecond blast vibration signal separation
13.4 Blast vibration damage initiative control
13.4.1 Influence of the interval of delay time on blasting vibration intensity
13.4.2 Blast vibration damage initiative control based on waveform interference
References
Appendices A Calculation results of unified criterion for damage induced by blast vibration
Appendices B Program about blast vibration analysis
Analysis of blast vibration signals-theories and methods
- 名称
- 类型
- 大小
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×
